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Abstract
The transmission tunnelling time through a barrier is often defined as the
probability that the particle is in the barrier divided by the transmission
probability current density. The dwell time, the time the particle stays in the
barrier, is commonly defined as the probability that the particle is in the barrier
divided by the incident probability current density. We define the reflection
tunnelling time in a similar way by dividing the probability that the particle is
in the barrier by the reflection current density. By conservation of probability,
the reciprocal of the dwell time is equal to the sum of the reciprocals of the
transmission and reflection times. This relation is illustrated by calculating the
different tunnelling times for a rectangular barrier.

PACS numbers: 03.65.−w, 03.65.Xp, 73.40.Gk

1. Introduction

Since the early days of quantum mechanics the question has been asked: ‘How long does a
particle spend in a barrier during tunnelling?’ Two other questions related to this one may also
be asked: ‘How long does a particle spend in the barrier before being transmitted?’ and ‘How
long does a particle spend in the barrier before being reflected?’ The duration of a particle in
the barrier regardless of how it escapes is called the dwell time. The time it takes for a particle
to enter the barrier and be transmitted is called the transmission tunnelling time. The time it
takes for a particle to enter the barrier and be reflected is called the reflection tunnelling time
[1–4]. The relationship between these three times is still another question, an answer to which
is proposed in this paper.

The transmission tunnelling time for a stationary state can be defined as the reciprocal
velocity field of the particle integrated over the length of the barrier. The velocity field of the
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particle is the probability current density of the particle in the barrier divided by the probability
of finding the particle in the barrier [5–7]. From conservation of probability the probability
current density in the barrier is a constant equal to the transmitted probability current density.
Therefore, the transmission tunnelling time is equal to the probability of finding the particle in
the barrier divided by its transmission current density. The dwell time is commonly defined as
the probability of finding the particle in the barrier divided by its incident probability current
density [10, 13]. We define the reflection tunnelling time in a similar manner as the probability
of finding the particle in the barrier divided by its reflection current density. The relationship
between these three times, based on conservation of probability, is that the reciprocal of the
dwell time is equal to the sum of the reciprocals of the transmission and reflection times. As an
example, we calculate the transmission time, reflection time and dwell time for a rectangular
barrier and demonstrate their relationship.

In section 2 the transmission tunnelling time is defined. The dwell time is defined in
section 3. In section 4 an analogous definition is given for the reflection tunnelling time. In
section 5 we show from conservation of probability that the reciprocal of the dwell time is
equal to the sum of the reciprocals of the transmission and reflection times. As an example
these tunnelling times are calculated in section 6 for a rectangular potential. The conclusion
is given in section 7.

2. Transmission tunnelling time

The transmission tunnelling time τt , or just transmission time, of a quantum particle in one
dimension is the time it takes for a particle to traverse the barrier. It is defined as the reciprocal
velocity field of the particle integrated over the width of the barrier. The velocity field of the
particle is its probability current density divided by its probability density.

The probability density ρ = ρ(x, t) at the point x and at time t of a quantum particle
with a (normalized) wavefunction ψ = ψ(x, t) is its absolute value squared, ρ = |ψ |2.
The probability current density j of a particle is the real part of its velocity operator p/m

sandwiched between its (normalized) wavefunctions:

j (x, t) = Re ψ∗ p

m
ψ (2.1)

where the canonical momentum operator is p = −ih̄∂/∂x, the mass of the particle is m and the
real part is denoted by Re. Probability is conserved locally, so the probability density ρ and the
probability current density j together satisfy the equation of continuity, ∂ρ/∂t + ∂j/∂x = 0.

The velocity field v(x, t) for the ‘probability fluid’ of the particle in terms of its probability
density and probability current density is

v(x, t) ≡ j (x, t)

ρ(x, t)
(2.2)

in analogy with the classical velocity field for a fluid. In this ratio the normalization
constants for the wavefunctions in the numerator and denominator cancel, so unnormalized
wavefunctions can be used for the velocity field. We will set this velocity field equal to
dx(t)/dt as in the de Broglie–Bohm formulation of quantum mechanics [12].

In the de Broglie–Bohm approach to tunnelling times, the velocity field in equation (2.2)
for a time-dependent wave packet is proportional to the partial derivative of the phase of
the wavefunction with respect to x. This velocity field is then set equal to dx(t)/dt and the
equation is solved for the quantum trajectory x = x(t) assuming an initial displacement x(0).
The time it takes for the particle to tunnel through the barrier is then calculated. These times
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are averaged over all the initial displacements corresponding to the initial wave packet [7, 14]
to obtain an average tunnelling time.

Our approach is to consider a stationary state of a particle with any shape of potential
barrier V (x) with finite support, i.e., V (x) = 0 for {x|x < 0, x > a} for some a. For a
stationary state (normalized) wavefunction ψ = ψ(x) corresponding to an energy E less than
the height of the barrier, the probability density ρ(x) = |ψ(x)|2 is time independent. From the
equation of continuity the probability current density j is constant. Therefore, by conservation
of probability, the probability current density j = jB in the barrier B = {x|V (x) > E} is
equal to the transmitted probability current density jt in the region x > a beyond the barrier.
The time-independent velocity field v(x) = jB/ρ(x) = jt/ρ(x) in the barrier is equal to the
velocity dx/dt in the barrier, so dt = v(x)−1 dx. The transmission tunnelling time, or just
transmission time, τt for the particle is thus given by the common expression [5, 12]

τt =
∫

B

dx

v(x)
= 1

jt

∫
B

dx ρ(x) (2.3)

where the integration is over the barrier region B and the integral in equation (2.3) is the
probability of finding the particle in the barrier [2, 24].

For any shape of the potential barrier with finite support a particle of energy E and mass m
in the region to the left of the barrier (x < 0) has an incident wavefunction ψi(x) = exp(ikx),
where the wave number is k = (2mE)1/2/h̄. Without loss of generality the incident amplitude
can be taken as unity. (Normalization in a box of unit volume can be used.) The particle also
has a wavefunction to the right of the barrier (x > a) that is ψ(x) = D exp(ikx), where D is
the complex transmission amplitude. From equation (2.1) the probability current density in
the transmitted region is

jt = h̄k

m
T (2.4)

where T = |D|2 is the transmission coefficient. If equation (2.4) is substituted into
equation (2.3) the transmission time is [5]

τt = m

h̄kT

∫
B

dx ρ(x). (2.5)

For a fixed probability of the particle being in the barrier region, there is an inverse
relationship between the transmission coefficient T and the transmission time τt . The less
probable it is for the particle to be transmitted, the longer it takes for the particle to traverse the
barrier. If the transmission coefficient were zero, it would take an infinite time for the particle
to traverse the barrier. In other words, if it were impossible for a particle to be transmitted, the
corresponding time for transmission to occur would be infinite. Conversely, if the transmission
coefficient were unity, there would be no reflection. The transmission time and the dwell time
would be the same in this case.

3. Dwell time

The dwell time is the time that the particle spends in the barrier region, regardless of how
it escapes [1]. The particle can escape from the barrier by one of two channels—either
transmission or reflection. The dwell time [10, 11] is taken here as the probability for the
particle to be in the barrier divided by the incident probability current density ji ,

τd = 1

ji

∫
B

ρ(x) dx. (3.1)
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This expression was derived for a wave packet by Leaven and Aers [13] and is given in
appendix B of [3].

If the incident wavefunction is a plane wave ψi(x) = exp(ikx), the incoming current
density is

ji = h̄k

m
(3.2)

from equation (2.1). The dwell time is thus given by the common expression

τd = m

h̄k

∫
B

ρ(x) dx. (3.3)

If the barrier width goes to zero for a finite potential, the probability of the particle to be in the
barrier goes to zero and the dwell time is zero.

4. Reflection time

The reflection tunnelling time, or just reflection time, τr is the time it takes for a particle to
be reflected out of the barrier. We define it in a way analogous to the definition of the
transmission tunnelling time and the dwell time. The reflection tunnelling time τr is defined
as the probability for the particle to be in the barrier divided by the magnitude of the reflection
probability current density,

τr = 1

|jr |
∫

B

dx ρ(x). (4.1)

This definition follows from the conservation of probability and the previous definitions of the
transmission and dwell times.

For the same potential barrier, the same particle of energy E in the region to the left of the
barrier (x < 0) has a wavefunction of the form ψ(x) = exp(ikx) + A exp(−ikx), where A is
the complex reflection amplitude. From equation (2.1) the reflection current density is

jr = −h̄k

m
R (4.2)

where R = |A|2 is the reflection coefficient. The reflected current density is directed to the
left. If equation (4.2) is substituted into equation (4.1), the reflection tunnelling time is

τr = m

h̄kR

∫
B

dx ρ(x). (4.3)

For a fixed probability of the particle being in the barrier region, there is an inverse
relationship between the reflection coefficient R and the reflection time τr . The less probable it
is for the particle to be reflected, the longer it takes for the particle to be reflected. If the
reflection coefficient were zero, as it would be in resonant tunnelling, it would take an infinite
time for the particle to be reflected. In other words, if it were impossible for a particle to
be reflected, the corresponding time for reflection to occur would be infinite. Conversely, if
the reflection coefficient were unity, there would be no transmission. The reflection time and
the dwell time would be the same in this case.

5. Relationship between tunnelling times

5.1. Dwell, transmission and reflection times

The incident probability current density ji is equal to the sum of the outgoing current densities

ji = jt + |jr | (5.1)
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because probability is conserved and there are no sources or sinks of probability. From
equations (2.4), (4.2) and (3.2), equation (5.1) gives the condition that the sum of the
transmission coefficient T and the reflection coefficient R is unity, R + T = 1.

If we divide equation (5.1) by the probability of finding the particle in the barrier∫
B

dx ρ(x), we find from equations (3.1), (2.3) and (4.1) a relationship between the dwell,
transmission and reflection tunnelling times,

1

τd

= 1

τt

+
1

τr

. (5.2)

Thus the dwell time is less than the transmission time and the reflection time separately, since
two channels are available for the particle to escape from the barrier. This expression is a
new relationship between the three times. For resonant tunnelling the reflection time would
be infinite and equation (5.2) would imply that the dwell time would equal the transmission
time.

Based on the definitions of the dwell, transmission and reflection times in equations (3.3),
(2.5) and (4.3), we can see that these times satisfy the relationship

τd = T τt = Rτr . (5.3)

Therefore, we have the inequalities τd � τt and τd � τr because the particle in the barrier can
escape by either transmission or reflection. If the reflection time is equal to the transmission
time τr = τt , then R = T = 1/2 and equation (5.3) gives 2τd = τr = τt . The dwell time
is half the transmission time or the reflection time in this case, since the particle can escape
the barrier region by either transmission or reflection. Equation (5.3) is a consequence of our
definitions and is in contrast to another relation that has been suggested.

5.2. Another relation

Another relationship between the dwell time τ ′
d , the reflection time τ ′

r and the transmission
time τ ′

t that has been suggested is

τ ′
d = Rτ ′

r + T τ ′
t (5.4)

where the primes denote that the times are in general defined differently from those above
[3, 7, 16–22]. This relation should be compared with equations (5.2) and (5.3). Equation (5.4)
has been criticized by a number of authors [2, 24, 26]. In particular it neglects the possibility
of interference terms.

If τ ′
r = τ ′

t , then both the reflection time and the transmission time are equal to the dwell
time τ ′

d . The dwell time τ ′
d is the time the particle remains in the barrier, regardless of whether

it is transmitted or reflected. Since there are two channels for escaping the barrier, it seems
strange that in this case the dwell time would be the same as the other times. Equation (5.4)
is obviously inconsistent with equation (5.3) for the dwell, transmission and reflection times
defined above (without primes) that satisfy equation (5.2).

Equation (5.4) involves quantities other than the tunnelling times, namely, R and T, that
must be calculated or measured. With experimental data on the transmission, reflection and
dwell times, as well as reflection and transmission coefficients, it will be possible to see which,
if either, of the two relations in equations (5.2) and (5.4) is valid.

6. Rectangular potential barrier

As an example, the tunnelling times are now calculated for a rectangular barrier and their
relationship is shown. The potential energy for a rectangular barrier in one dimension is
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V (x) = V0 for 0 < x < a and 0 otherwise. The solution to the time-independent Schrödinger
equation for an energy less than the barrier height E < V0 is the wavefunction

ψ(x) =



exp(ikx) + A exp(−ikx) for x < 0
B exp(−κx) + C exp(κx) for 0 � x � a

D exp(ikx) for x > a

(6.1)

where the incident, reflected and transmitted wave number is k = (2mE)1/2h̄−1 and the
imaginary wave number in the barrier is iκ = i[2m(V0 − E)]1/2h̄−1. A characteristic wave
number in this problem is k0 = (2mV0)

1/2h̄−1, so k2 + κ2 = k2
0. The incident wavefunction

ψi(x) = exp(ikx) in equation (6.1). The amplitudes in the wavefunction in equation (6.1)
are determined from the boundary conditions that the wavefunction and its derivative are
continuous at 0 and a. The rectangular barrier is discussed in most quantum mechanics
textbooks, see e.g. [23].

From equation (2.5) the transmission tunnelling time is

τt = (4kκ3)−1Q (6.2)

where

Q = sinh(2κa) − 2κa(k2 − κ2). (6.3)

The tunnelling times are measured in units of a characteristic time τ0 = h̄/2V0, length is
measured in units of k−1

0 and energy is measured in units of V0.
From equation (4.3) the reflection time τr is

τr = kκ−1 sinh−2(κa)Q (6.4)

and from equation (3.3) the dwell time τd is

τd = kκ−1[sinh2(κa) + (2κk)2]−1Q. (6.5)

Together, the sum of the reciprocals of τt and τr in equations (6.2) and (6.4), respectively, gives
the reciprocal of τd in equation (6.5). Therefore, equation (5.2) for the relationship between
the tunnelling times is explicitly verified.

A simple numerical application can be made using the potential parameters for the
heterostructure GaAs/Al0.3Ga0.7As/GaAs [28]. The potential height is V0 � 0.3 eV, a
typical width is a � 50 Å and the effective mass is meff � 0.067 m. For these values of the
relevant physical quantities the dimensionless width of the potential is a � 3.63 in units of
k−1

0 = 13.77 Å and the characteristic time is τ0 � 1.1 fs. The tunnelling times τt , τr and τd

are shown in figure 1 as a function of energy E at a fixed barrier width a, and in figure 2 as a
function of barrier width a at fixed energy E.

In figure 1 the transmission time τt in equation (2.5) decreases with increase in energy,
since the transmission coefficient T in the denominator increases with energy [23]. At zero
energy there is no transmission T = 0, so the transmission time is infinite as expected for a
process that does not occur. Conversely, the reflection time τr in equation (4.3) increases with
increase in energy, since the reflection coefficient R in the denominator decreases with increase
in energy. On the other hand, the dwell time τd in equation (6.5) approaches zero as the energy
approaches zero because there is very little penetration of the particle into the barrier region.
The dwell time slowly varies as the energy approaches unity because the transmission and
reflection times for the rectangular barrier in equation (5.2) compensate each other.

In figure 2 the transmission time τt in equation (2.5) increases with increase in barrier
thickness a, since the transmission coefficient T in the denominator decreases with the barrier
thickness. For zero thickness the transmission coefficient is unity, so the transmission time
approaches the dwell time as the thickness decreases. Conversely, the reflection time τr in
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Figure 1. Tunnelling times τ (in units of τ0) versus energy E (in units of V0) for the rectangular
barrier with fixed width a = 1 (in units of k−1

0 ). The transmission time τt is the solid line, the
reflection time τr is the dashed line and the dwell time τd is the dotted line.
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Figure 2. Tunnelling times τ (in units of τ0) versus rectangular barrier width a (in units of k−1
0 )

for fixed energy E = 0.5 (in units of V0). The transmission time τt is the solid line, the reflection
time τr is the dashed line and the dwell time τd is the dotted line.

equation (4.3) decreases with increasing thickness, since the reflection coefficient R in the
denominator increases with increase in thickness. On the other hand, the dwell time τd

approaches zero as the thickness approaches zero because in this limit there is no barrier. The
dwell time τd approaches a constant for large barrier thickness, which is an example of the
Hartman effect [29]. In [33] this Hartman effect also appears in a phase time [30–32].

7. Conclusion

Further experimental measurements of dwell, transmission and reflection times, along with
reflection and transmission coefficients, using electrons and photons [34–36] are highly
desirable. All the proposals for these tunnelling times and their relationship, including
our definition of reflection time in (4.3) and relationship in (5.2), could be compared with
experimental data to see which, if any, are confirmed.
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